روش پارامتر کمکی با استفاده از جندجمله ای های آدومیان و تبدیل لاپلاس برای معادلات دیفرانسیل غیرخطی

پایان نامه
چکیده

در این پایان نامه بعد از بررسی نتایج به دست آمده توسط روش پارامتر کمکی که با ترکیب تبدیل لاپلاس و چند جمله ای آدومیان انجام شده یک روش پارامتر کمکی بر اساس استفاده از مفهوم هموتوپی و ترکیب روش های تبدیل دیفرانسیل و چند جمله ای های آدومیان معرفی می شود.

منابع مشابه

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

متن کامل

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

متن کامل

تقریبی از جواب معادلات انتگرال- دیفرانسیل فردهلم غیرخطی با تأخیر زمانی با استفاده از روش تیلور

در این مقاله یک روش عددی مناسب برای حل معادلات انتگرال- دیفرانسیل فردهلم غیر خطی با تأخیر زمانی ارائه شده است. روش مبتنی بر بسط تیلور می باشد. این روش معادله انتگرال- دیفرانسیل و شرایط داده شده را به معادله ماتریسی که متناظر با یک دستگاه از معادلات جبری غیر خطی با ضرایب مجهول بسط تیلور می باشد تبدیل می کند، که از حل دستگاه، ضرایب بسط تیلور تابع جواب به دست می آید. سپس با مثال هایی کارایی روش را...

متن کامل

ترکیب روش تبدیل دیفرانسیل کسری با چندجمله ای های آدومیان

در روش تبدیل دیفرانسیل کسری اصلاح یافته، از خواص تبدیل دیفرانسیل کسری استفاده کرده و به جای قسمت غیرخطی معادله از چندجمله ای های آدومیان استفاده می کنیم و یک طرح بازگشتی را برای معادله ی دیفرانسیل کسری با شرایط اولیه به دست می آوریم و با استفاده از این طرح بازگشتی، بسط تیلور سری جواب را برای بتا محاسبه می کنیم. این روش در ریاضیات کاربردی، برای به دست آوردن جواب های تقریبی برای انواع مختلف از م...

بهبود روش تجزیه لاپلاس برای حل معادلات دیفرانسیل مسائل مقدار اولیه مرتبه دوم منفرد

در این مقاله ما بهبود روش تجزیه لاپلاس برای حل مسائل مقدار اولیه معادلات دیفرانسیل معمولی از مرتبه دوم را به کار می بریم. روش پیشنهاد شده می تواند برای مسائل خطی و غیرخطی به کار برده شود.

متن کامل

حل عددی معادلات دیفرانسیل فازی با استفاده از روش آدومیان

در این پایان نامه ضمن ارائه تعاریفی مقدماتی از منطق فازی به بررسی معادلات دیفرانسیل فازی پر داخته و یک روش تقریبی برای حل عددی معادله دیفرانسیل فازی مر تبه اول با استفاده از روش آدومیان ارائه می دهیم به طوری که ابتدا راه حل تقریبی را در حالت خاص پیدا کرده سپس آن را در مورد فازی بسط می دهیم همچنین با استفاده از این روش مسا ئلی را حل می کنیم که روش های کلاسیک برای آنها نمی توانند مورد استفاده قرا...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه بناب - دانشکده علوم ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023